Edge Sheared Flows and Blob Dynamics

J. R. Myra, a W. M. Davis, b D. A. D’Ippolito, a B. LaBombard, c D. A. Russell, a J. L. Terry, c and S. J. Zweben b

a) Lodestar, Boulder, CO, USA
b) PPPL, Princeton, NJ, USA
c) MIT, Cambridge, MA, USA

Presented at the US Transport Taskforce Workshop TTF 2012
Annapolis, MD April 10-13, 2012

Supported by the USDOE under grants DE-FG02-97ER54392, DE-FG02-02ER54678, DE-AC02-09-CH11466, DE-FC02-99ER54512, DE-AC02-09CH11466, and PPPL Subcontract 5009625-F.
Motivation & Background

- Sheared flows are believed to be important for the L-H, and H-L transitions.
- Edge sheared flows play a dual role
 - regulating the turbulence (and hence the power flux crossing the separatrix)
 - controlling the character of emitted structures such as blob-filaments.
- Blob generation and dynamics impacts:
 - the (near-separatrix) scrape-off-layer (SOL) width, which is critical for ITER power handling in the divertor
 - far SOL blob interaction with plasma-facing components
GPI blob-trails analysis tool

- Use relative GPI intensity $\delta I/\langle I \rangle$ as the signal to analyze (in 2D space + time)
- For each frame: locate local maxima (blobs), fit ellipse to each
- Track the motion and structure evolution from frame to frame
- Analyze and compare data from
 - NSTX
 - C-Mod
 - SOLT simulations
Experimental blob trails
(low power Ohmic and L-mode)

NSTX

SH139444; 266 to 268 msec and MinHt > 1.

• Some blob trails show:
 – reversal of v_y near the separatrix
 – “bouncing” off the separatrix

• Some trails show very complicated trajectories, esp. C-Mod high v_{ei}

Alcator C-Mod high v_{ei}

SH1100824017: 70 to 80 msec and MinHt > 1.30
Statistical data from blob tracking
(low power Ohmic and L-mode)

NSTX

- Mean flow is + (e-direction) in edge; - (i-direction) in SOL
- Deviations are as large or larger than the means, esp. C-Mod high v_{ei}
Experimental inputs to seeded blob simulations

<table>
<thead>
<tr>
<th></th>
<th>NSTX 139444</th>
<th>C-MOD 1100824017</th>
</tr>
</thead>
<tbody>
<tr>
<td>comment</td>
<td>ohmic</td>
<td>ohmic high v_{ei}</td>
</tr>
<tr>
<td>$n_{e,sep}$ (cm$^{-3}$)</td>
<td>5.8×10^{12}</td>
<td>1.0×10^{14}</td>
</tr>
<tr>
<td>$T_{e,sep}$ (eV)</td>
<td>19.</td>
<td>47.</td>
</tr>
<tr>
<td>$\rho_{s,sep}$ (cm)</td>
<td>0.26</td>
<td>0.025</td>
</tr>
<tr>
<td>$\Lambda_{SOL} \sim v_e^*(m_e/m_i)^{1/2}$</td>
<td>0.3 – 0.8</td>
<td>1-3</td>
</tr>
<tr>
<td>blob size $a_{b,sep}$ (cm)</td>
<td>2.2 ± 0.5</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>blob amp $\delta I/I_{sep}$</td>
<td>0 – 1.6</td>
<td>0 – 0.6</td>
</tr>
</tbody>
</table>

profiles
Simulation: physics model

Scrape-Off-Layer Turbulence (SOLT) code

- 2D fluid turbulence code: model SOL in outer midplane
 - classical parallel + turbulent cross-field transport
- Evolves n_e, T_e, Φ with parallel closure relations
 - sheath connected, with flux limits, plus collisional regimes
- Strongly nonlinear: $\delta n/n \sim 1 \Rightarrow$ blobs
- Model supports drift waves, curvature-driven interchange modes, sheath instabilities

Present Work:

- Take plasma profiles and connection lengths from NSTX and Alcator C-Mod shots
- Hand-seed blobs as initial condition for simulation, and track their motion
- Compare blob tracks in experiment and simulation
- NSTX base case parameters (mostly so far)
- Some C-Mod cases (labeled)
Seeded blob simulation results

Small amplitude blobs “bounce” off the separatrix, large ones are ejected

- Background \(<v_y> \) E×B flows small here. The effect must be related to either shear in electron diamagnetic flow, or the sharp change in sheath conductivity at the separatrix
- Ejected blob reverses \(v_y \) in SOL (see next slide). Note elliptical deformation
- (Small seeded blob induces a larger blob which does get ejected)
Blobs motion is influenced by wave velocity and Reynolds-charge dynamics as well as background E×B flow

- In edge region v_{*e} is positive and carries the blob (similar to Horton drift vortex)
 - Wave v_g probably relevant here (need to verify)
- Ejected blob reverses v_y in SOL due to tilting of charge dipole
 - see blob track on previous slide
 - accentuates existing flow gradient (incl. v_{*e} gradient)
Blob trapping vs. ejection controlled by strength of blob charge dipole relative to flow shear

- Blob charge dipole here is influenced by changing:
 - amplitude (previous slide)
 - viscosity
 - collisionality (parallel currents and sheath draining of charge)
 - friction (charge dissipation from cross-field currents, e.g. X-points)
- Likely competition: blob vorticity vs. flow shear vorticity (apparently taking account of wave v_g shear?)
 - $v_{yExB}' << v_{yblob}'$ in all these cases

- C. Mass track
- max amp track
Parallel-disconnected blobs exhibit complex shapes and trajectories

- Base case NSTX parameters are marginally sheath connected
- Collisional parallel disconnection induced here by artificially taking $Z_{\text{eff}} \rightarrow \infty \Rightarrow \text{“inertial” blob regime}$
- Disconnected limit may be relevant to C-Mod (more complexity is seen in experimental data, and in simulation below)
Edge drift-wave dynamics influences blob behavior

- Vary DW adiabaticity parameter $\alpha_{dw} = (0, 1, 10) \times \text{base} _ \text{case}$

 weak α_{dw} ⇒ strong ejection, no v_g-shear, no v_y reversal at separatrix
 - note Reynolds induced v_E
 - asymmetric sheath response to $+$ vs. $-$ charge ⇒ $v_y < 0$
 - sheath T_e rotation ⇒ $v_y < 0$

 moderate α_{dw} ⇒ v_y reversal

 strong α_{dw} ⇒ trapped blob
 - DW inhibits charge dipole
 - also v_g shear layer
Shear in v_{group} may influence Reynolds flow shear

- Seed blobs at two different locations and examine resulting flow generation
- C-Mod parameters and profiles

- Blob a) remains trapped while b) is ejected
- Reynolds generated flow shear (of v_E) follows tilt from shear of v_{gr}
- p_y conservation \Rightarrow bipolar
Blobs have a tendency to follow background \(E \times B \) flows in the SOL

- Influence of \(E \times B \) flows is on top of other mechanisms discussed
- Stronger for flows with shear length > blob scale size
- Flows imposed by specifying sheath potential \(\Phi \) (\(\neq 3T_e \) midplane)

Imposed Flows

- Imposed \(\langle v_y \rangle > 0 \)
- Imposed \(\langle v_y \rangle < 0 \)
Strong shear layers trap the blob

- Direction important (co or counter to DW tilt?, blob spin?)
- Trajectory changed not just by rapid v_y, but v_x actually affected, and can reverse

- Imposed $<v_y> > 0$

 between dashed brown lines

- Imposed $<v_y> = 0$

- Imposed $<v_y> < 0$
Conclusions

• Many features seen in blob tracking data can be reproduced from seeded blob simulations
 – size and scale of flows
 – dominant flow direction in edge (electron) and SOL (ion) for NSTX
 – v_y reversal of individual tracks
 – blobs bouncing off the separatrix
 – blob tracking and/or ejection depending on parameters
 – elliptical blob deformations near shear layers
 – complex trajectories especially in collisional cases (like C-Mod)

• New dynamic effects on blob motion and shear flow generation have been identified
 – blob-scale inhomogeneities \Rightarrow charge dipole tilt $\Rightarrow v_{y,\text{blob}}$ (can give v_y reversal)
 – shear in background group velocity may influence sense of Reynolds flows
 – blobs do not always follow background $E\times B$ flows, or net flows

• Other effects studied but not shown:
 – Effect of initial conditions on blob vorticity decays rapidly, especially dipole; less so for monopole (spin) vorticity.
 – Blob amplitude and scale size may affect $v_{y,\text{blob}}$ and how closely the blob tracks background v_E and v_{gr} (preliminary)