Inter-Species Collisionless Energy transfer by
drift wave-zonal flow Turbulence

1

L. Zhao and P. H. Diamond v

1.CMTFO and CASS; UCSD, La Jolla, CA 92093
2. WCI, NFRI, Korea



Outline

® /e reconsider the classic problem of * furbulent heating” and the
Inter-species transfer of energy in arift wave turbulence

® Motivation: Transfer vs Transport ==> Roles 1n energy budget

® Consider
_J— Net volumetric heating ===p Does turbulence heat a given volume of plasma?
. Electron — ion collisonless energy transfer channels

-

® (Calculate and Estimate Energy Transfer Channels

Electron cooling : quasilinear
B Ion heating : quasilinear, nonlinear, Ion Pol & Dia

-

® [mplication for ITER/Result and discussion
Turbulent vs collisonal transfer
Turbulent transport vs Turbulent transfer

|
. _ . J‘ Nonlinear electron cooling in CTEM
® Special Topics ongoing: .

-

Origin of temperature profile "stiffness"

® (Conclusion



Background

* ITER: collisionless, electron heated plasma
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* What is ultimate fate of the energy? Collisionless energy transfer mechanisms?



Motivation
 Transfer vs Transport
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transfer

— (J heat flux, energy loss by turbulent transport

Collisional transfer
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turbulent heating for single species:
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electron and 10n collisionless energy transfer, local
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L. (7.-T)) : electron and 10n heat transfer by collisions
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Y ITER: Jow collisionality, electron heated plasma

® (Collisionless energy transfer likely dominant!!



* [ssues with turbulent heating: <Ej} = Z<E Ja>

o=e,

* Classic Question:
* [s the net seating zero?( Manheimer 77)

- If periodic boundary condition , no boundary contributions t(<E J > :
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. ~ finite annular region
Surface term survives! === Net heating




* Point : <E~7>¢O

* Another perspective. wave energy theorem
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We need reconsider both the total turbulent heating and
energy transfer chanels in an annular region’/



« Collisionless, inter-species energy
— Where does the net energy transfer go?

— How 1s energy transferred from electrons to ions
(turbulent transfer channels)?

— How relate to saturation mechanisms?
— Role of ZF 1n heating?

— ZF is important to saturation, so must enter energy
transfer as well!?
»> Zonal flow damping by friction is an energy sink

> Nonlinear wave-particle interaction ( considered in
future) is another possibility



Turbulent Energy flow Channels
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® Necessary Correspondence: Nonlinear Saturation and
Energy Transfer

» Nonlinear saturation in turbulent state implies energy transfer
from source {VT,;»V”) to sink

» Schematically, saturation implies some balance condition
must be satisfied
ie. 0= V= y[z'/zea/” + yl'lhea/" T yZozm/ + yN[[D T...

electron lon Flow

>0 <0 <0 <0

» Channels for electron —. 10n energy transfer must be
consistent with saturation balance

In particular:

* If zonal flows control saturation, they must contribute to energy
transfer and dissipation.

* As zonal flows are nonlinearly generated (Reynolds stress), we
should consider other nonlinear heating channels.




Quasilinear Turbulent Heating in_Electron Drift Wave
(Prototype; CTEM- specific later)
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® Calculate(%4/,)  in quasilinear theory
» DKE for electron
» Take non-adiabatic electron distribution function
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Perpendicular Current Induced Turbulent Heating

® The turbulent heating induced by 10n polarization current

— <El]ff> :_<§J_'(g5}ff/)>+<ﬁj_.]f?> L \ jt_ll
—Defining a annular region(...) = T dz f rdo j (..)dr 572 ) ;
*Perpendicular heating ReynoldsO WOI'(i( on Z)Anal flow
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* wave energy flux ¢ Directly linkeYd to zonal flow drive

* At steady state
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-~ ) Zonal flow frictional damping is the final
<EL ) ']f1/> = _[ dmco/ <%> > O’
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fate of net electron-ion energy transfer

. . . . * other damping possible
* Diamagnetic current induced turbulent heating ©
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Overview of Results
7 Estimation of the turbulent heating contributions:

Turbulent Using mixing length
heating analytical approximation
for fluctuation levels




Basic comparision of channels

WL LE 0 DSOS e Rasios of energy dissipation channels
a=2m,q=2 at differernt collisionality

™ Ton Landau Damping
W Zonal flow friction

J_ s~1

.=10",p =10°  v,=107,p =10~

v Zonal flow frictional damping can be a significant dissipation channel

*

* "Collisionless drift wave" o>V, > O



Turbulent Heating NL wave-particle Interaction
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* The 1on diffusion equation 1n electron drift wave turbulence:
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Diffusion coefficient in quasilinear and nonlinear order

_ 2@ _ D Db _ 2 4)
D, =D00+DV+.. D, =D,=0"+07+. D =D7+DV+
The resonant ion kinetic energy evolution :

:J'dylm,}g

8
——jdﬁ/fﬂVD 8

* ZF coupling to o
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* The nonlinear 1on turbulent heating up to o U ‘ J 0(
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* The forth order nonlinear diffusion coefficient

~

o= i Wé ) (Dupree 68)

+ The particle orbit is expanded as : x(f) =x,+ v itex(H+e’n,()+...,

* The force in perturbative electric field
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* Similarly, the cross term of nonlinear diffusion coefficient
0(4):T<}g(f)%(f+f)>df and 0(4 R ](/41 > (41 ~1/p.
wr - 2 VerXar Vertaz
* The nonlinear turbulent heating for 1ons due to Ton Compton Scattering
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Turbulent energy transfer : Electron wave Ion
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* Estimate <E J>Z( )using the mixing length approximation

<~y (4) -~ (2) Mixing length approximation the turbulence
<E 4 > <E 4 >l intensity in the weak turbulence theory. (T.S. Hahm, 1991)

Y, V+ yMNz +7,-N=0 Vhastobe (Diamond, 2005)



Implication Bottom Line

* Electon turbulent energy transport
3 07

—n—=+V.-0 = <5 ]€>_ o e (]; _ ];) Electron heat balance
2 of 7,
N 2
electrons = tergirsgpyort
V7;Vn
) heat transport loss
collisional collisionless Comparison of the collisonal and collisionless

energy transfer.
heat transfer &Y

— Collisionless transfer can dominate at low

\/ \/ collisionaltiy

Comparison of energy transfer in collisonless
transfer and energy fransport by heat flux Q

lons
—— Can be of the same order!




Collisionality

Collisonality y, inITER
— dimensionless g‘”kqve

Ve =
%

=) Ve ~ 10_3
the

Collisionality at crossover of collisional and collisionless

coupling v

. . . ~ e e
— Energy transfer in collision : &, = . /;
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— Quasilinear trapped electron cooling in CTEM
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— At crossover Qz<z~??>(b —> V&~ 10°
The collisonless turbulent energy transfer then beats
collisional inter-species coupling process!

Collisionless process will control electron-ion transfer in ITER




Transfer vs Transport
* The|transfer and/transport energy loss in CTEM

— Compare the volume integral of the electron cooling to
the surface integrated of the electron heat flux
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— The heat flux for electrons :Qe —< > =~ ZA’Q Imff ()
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— The pressure quctuation
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The ratio
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The rate of electron energy lost by collisonless
<E /> N 2_ of1) energy transfer is comparable to turbulent
transport by CIEM /
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Result and Discussion
* Net heating

* Quasilinear turbulent energy transfer in drift wave
* Nonlinear 1on heating by beat wave resonance
* Energy flux differential gives rise to the net heating Zonal flow
*Energy transfer channels
* [dentify 1mportant energy transfer channels

 Zonal flow frictional damping can be comparable to LD

* For low collisionality ITER plasma, collisionless energy
transfer 1s a critical element of transport model.

* it 1s same order as transport
In the future, an important task for ITER transport modelling

* Develope a tractable representation of the zu7bulent seating and
collisionless energy transfer



Some details for CTEM
Realistic application: details of turbulent energy transfer in CTEM

* Trapped electron precession frequency:
_ £ £
a)d ~ 0 pscs
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* Bounce everaged kinetic equation for CTEM
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Toroidal procession
) L of trapped particle
* turbulent heating for quasilinear trapped electron
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Nonlinear trapped electron cooling

®The beat mode resonance effect for trapped electrons (L.Chen'77)
» The 3rd order nonlinear trapped electron response function (Gang'30)
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® The nonlinear turbulent heating for trapped electrons
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=% |n CTEM, trapped electron can have quasilinear and nonlinear
cooling. Nonlinear cooling can be significant.
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Related experimental phenomenon

* Electron temperature profile "stiffness"
- temperature profile react weakly to changes of

auxiliary heating deposition

C.C . Petty 94
, ~Heat pinch : inward flow
Poss1bl.e Nondiffusive termin  “'[
dynamical | heat flux
cause Electron- 1on energy transfer in

[=3

FoL

~ the core: " Sink"

T, (keV)

- They are two different and independent
effects . which one is more efficient? Bot/
must be examined..
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(Weiland ' 89), (L. Wang '2011)



Conclusion
ITER plasma 1s low collisionality, electron heated plasma

Turbulent heating and Turbulent energy transfer channels
— Net heating occurs!

— Zonal flow (& frictional damping) can be significant energy
transfer channel (and sink) for CTEM turbulence

Collisonless energy transfer likely dominant in energy
coupling and a critial element 1n transport analysis

— Does this process excite ITG?

Future work extend to :
— Realistic model: CTEM
— Representation for energy transfer in ITER modelling

~

— Future experiment :electron temperature profile "stiffness"
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]contributions to Residual stress, in momentum flux




