Gyrokinetic particle simulations of reversed shear Alfvén eigenmodes (RSAEs) in DIII-D tokamak

W. $Deng^{1,2}$

GTC team: Z. Lin^{1,3}, I. Holod¹, Z. Wang¹, Y. Xiao¹, H. Zhang^{1,3}
Other codes: E. Bass⁴ (GYRO), D. Spong⁵ (TAEFL)
Experimental data: W. Heidbrink¹, B. Tobias², M. Van Zeeland⁴

¹ University of California, Irvine, USA
 ² Princeton Plasma Physics Laboratory, USA
 ³ FSC, Peking University, China
 ⁴ General Atomics, USA
 ⁵ Oak Ridge National Laboratory, USA

Supported by US DOE SciDAC GSEP Center

Introduction

- Gyrokinetic simulation is a powerful tool to study energetic particle transport by Alfvén eigenmodes.
 - Self-consistent inclusion of global effects, kinetic effects, nonlinear effects, etc.
 - Capability of separating different levels of physics: linear and nonlinear physics; driving and damping mechanisms.
- Simulations of TAE [W Zhang *et al.*, PoP 2012], RSAE [Deng *et al.*, PoP 2010 & NF 2012a], BAE [H Zhang *et al.*, PoP 2010] by GTC have been verified against analytic theory and reliable hybrid MHD-gyrokinetic code.
- Now we push this forward to the validation of RSAE simulation against a well-diagnosed DIII-D experiment #142111. [Deng et al., NF 2012b]

$$\uparrow \omega_{\rm RSAE}(t) \approx \frac{v_{\rm A}}{R_0} \left| \frac{m}{\downarrow q_{\rm min}(t)} - n \right|$$

Spectrogram of DIII-D #142111 showing frequency up-sweeping of RSAEs driven by NBI energetic particles [Van Zeeland *et al.*, PoP 2011; Tobias *et al.*, PRL 2011]

1 GTC gyrokinetic model for kinetic-MHD modes

2 Simulations of RSAEs in DIII-D discharge #142111

- Good agreements among GTC, GYRO, TAEFL, & experiment
- RSAE frequency up-sweeping and RSAE to TAE transition
- Damping and driving mechanisms
- Mode structures

Simulations of TAEs in DIII-D discharge #142111 (Z. Wang)
Frequency and mode structure agreement with experiment

1 GTC gyrokinetic model for kinetic-MHD modes

2 Simulations of RSAEs in DIII-D discharge #142111

- Good agreements among GTC, GYRO, TAEFL, & experiment
- RSAE frequency up-sweeping and RSAE to TAE transition
- Damping and driving mechanisms
- Mode structures

Simulations of TAEs in DIII-D discharge #142111 (Z. Wang)
Frequency and mode structure agreement with experiment

Kinetic-MHD via gyrokinetic simulation

• Nonlinear gyrokinetic equation, Poisson's equation and Ampère's law

$$\frac{\partial f}{\partial t} + (v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_{\mathrm{d}}) \cdot \frac{\partial f}{\partial \boldsymbol{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = 0 \qquad \qquad \frac{Z_{\mathrm{i}} n_{\mathrm{i}}}{T_{\mathrm{i}}} (\phi - \tilde{\phi}) = \sum_{\alpha} Z_{\alpha} \bar{n}_{\alpha} \\ - \frac{c}{4\pi} \nabla_{\perp}^2 A_{\parallel} = \sum_{\alpha} Z_{\alpha} \bar{n}_{\alpha} u_{\alpha}$$

• In fluid limit, gyrokinetic system recovers MHD modes including Alfvén wave, interchange mode, kink mode, KBM

$$\underbrace{\frac{\omega(\omega - \overbrace{\omega_* P}^{\text{KBM}})}{v_A^2} \nabla_{\perp}^2 \,\delta\phi + \overbrace{i \boldsymbol{B}_0 \cdot \nabla \left[\frac{\nabla_{\perp}^2(k_{\parallel} \,\delta\phi)}{B_0}\right]}^{\text{SAW}}}_{-i\nabla(k_{\parallel} \,\delta\phi) \times \boldsymbol{b}_0 \cdot \nabla \left(\frac{\boldsymbol{b}_0 \cdot \nabla \times \boldsymbol{B}_0}{B_0}\right) \quad \longleftarrow \text{ kink drive}}$$
$$\underbrace{-i\omega \frac{4\pi}{c} \left[\nabla \times \boldsymbol{b}_0 \cdot \nabla \left(\frac{\delta P_{\parallel}}{B_0}\right) + \boldsymbol{b}_0 \times \nabla B_0 \cdot \nabla \left(\frac{\delta P_{\perp}}{B_0^2}\right) + \frac{\nabla \times \boldsymbol{b}_0 \cdot \nabla B_0}{B_0^2} \,\delta P_{\perp}\right]}_{\text{interchange drive}}$$

= 0

, W. Deng, Z. Lin and I. Holod,

52, 023005 (2012)]

1 GTC gyrokinetic model for kinetic-MHD modes

2 Simulations of RSAEs in DIII-D discharge #142111

- Good agreements among GTC, GYRO, TAEFL, & experiment
- RSAE frequency up-sweeping and RSAE to TAE transition
- Damping and driving mechanisms
- Mode structures
- Simulations of TAEs in DIII-D discharge #142111 (Z. Wang)
 Frequency and mode structure agreement with experiment

• GTC, GYRO and TAEFL use the same geometry from EFIT and the same plasma profiles from ONETWO for rigorous benchmark.

Freq./growth rate agreement among GTC, GYRO and TAEFL

Experimental frequency shown here has Doppler shift by plasma rotation (8kHz) subtracted.

GTC: gyrokinetic particle-in-cell (PIC) code

GYRO: gyrokinetic continuum code

TAEFL: MHD-gyrofluid code

5/15

RSAE freq. up-sweeping and RSAE to TAE transition

Closer look at transition from RSAE to TAE (2)

0.1

0.2

0.3

ρ

0.4

0.5

0.6

Damping and driving mechanisms identified & measured

 $q_{\min} = 3.18$

2111111			
Case	Description	$(\omega_r, \gamma)/(2\pi)/\mathrm{kHz}$	γ/ω_r and damping
			or driving mechanism
(I)	Zero temperature	$(73.8, \sim 0)$	Continuum damping
	ideal MHD		
	Finite δE_{\parallel} , adiabatic e^-		Radiative damping
(II)	with $T_e \rightarrow T_e + 7T_i/4$,	(87.3, -3.12)	added on top of case (I)
	kinetic ion with $T_i \rightarrow 0.01 T_i$		
	Same as case (II) except		Ion Landau damping
(III)	for real $T_e \& T_i$	(85.1, -0.499)	& pressure gradient driving
	profiles recovered		added on top of case (II)
(IV)	Drift-kinetic e^- added	(85.1, -1.61)	e^- kinetic damping
	on top of case (III)		added on top of case (III)
(V)	Same as case (III) except	(92.6, 6.79)	Fast ion gradient driving
	that fast ions are added in		added on top of case (III)
(VI)	Drift-kinetic e^- added	(92.0, 6.17)	e^- kinetic damping
	on top of case (V)		added on top of case (V)

• Damping rate calculation requires non-perturbative, fully self-consistent mode structure, which will be clearly seen in the next two slides.

[W. Deng et al., Nuclear Fusion 52, 043006 (2012)]

Mode structures of cases (III) and (IV) (III) GK bg ion, no fast ion, ad. e^- (IV) GK bg ion, no fast ion, DK e^-

Mode structures of cases (V) and (VI) (V) GK bg & fast ion, adiabatic e^- (VI) GK thermal & fast ion, DK e^-

11/15

\boldsymbol{B}_{tor} and \boldsymbol{J} direction effect $(q_{min} = 3.22)$

1 GTC gyrokinetic model for kinetic-MHD modes

2 Simulations of RSAEs in DIII-D discharge #142111

- Good agreements among GTC, GYRO, TAEFL, & experiment
- RSAE frequency up-sweeping and RSAE to TAE transition
- Damping and driving mechanisms
- Mode structures

Simulations of TAEs in DIII-D discharge #142111 (Z. Wang)
Frequency and mode structure agreement with experiment

n-scan of TAEs at t=522ms ($q_{min} = 4.025$ **)**

- The frequencies of n = 3, 4, 5 agrees well with experimental results.
- In experiment, the signals from n = 3, 4, 5 are the strongest. So are the growth rates in our simulation.
- The reason why n = 2 TAE is missing in experiment is unknown.

n = 4 **TAE mode structure comparison with DIII-D** The mode structure agrees quite well with the ECEI data from DIII-D (data provided by Benjamin Tobias)

Figure: Left:snapshot of TAE mode structure on a poloidal cross section. **Right:** Comparison of TAE structure in GTC with that in DIII-D discharge # 142111 from ECEI image

Summary

- Electromagnetic gyrokinetic simulation model used in GTC can be shown to reduce to ideal MHD theory in the linear and long wave-length limit.
- $\bullet\,$ Validation of simulations of RSAEs in DIII-D discharge $\#142111\,$
 - ▶ Good agreements in frequency, growth rate and mode structure in comparisons among GTC, GYRO and TAEFL.
 - ▶ Simulation frequencies close to experiment in both up-sweeping RSAE and RSAE to TAE transition regions. Simulation growth rates close to experimental estimate.
 - ▶ Damping and driving mechanisms of RSAE identified and measured.
 - Nonlinear simulations for studies of RSAE saturation mechanism and fast ion transport are in progress.
- Validation of simulations of TAEs in the same DIII-D shot also gives good agreements in frequency and mode structure.