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How far can NOVA – ORBIT modeling of fast ion 
transport during, e.g., TAE bursts be pushed? !

•  Neutron rate drops seen with fishbone-like modes, strong 
TAE bursts (avalanches) on NSTX."

•  An earlier study of TAE avalanches in L-mode plasmas found 
promising agreement, here we extend to H-modes."

•  TAE structure can be modeled with NOVA code, but mode 
amplitude and frequency chirping are introduced empirically."

•  Fast ion transport is presently modeled with the guiding 
center code (ORBIT), but full-orbit simulations (SPIRAL*) will 
be used to validate the guiding-center calculations."

•  Surprising result is that a drop in fast-ion energy, rather than 
ion losses, is responsible for most of the neutron rate drop."

2!

* G. Kramer!
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R0 != 0.86 m!
a = 0.68 m!

B0 = 0.3-0.55 T!
Ip ≤ 1.2 MA!
βtor!≤ 40%!

ne!≤ 10 x 1019/m3!

• Low field, high density VAlfvén ≈ 0.5 - 2.7 x 106 m/s.!
• Beam injection energy 60 - 100 kV, Vfast ≈ 2.6 - 3.1 x 106 m/s!
• Reactors would have higher field and fusion !'s with V!/VAlfvén > 1!

NSTX has low field, high density and current;  
perfect for study of fast ion-driven modes!
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Large "fast, Vfast/VAlvén gives NSTX many energetic 
particle driven modes!

•  Modes, possibly rsAE, typical during 
current ramp.!

•  TAE and/or TAE avalanches around 
start time of current flattop; !
-  low density, high fast ion ".!

•  Neutron rate drops correlated with 
avalanches.!

•  Later, at higher density, lower 
amplitude TAE activity. !

•  Dominant TAE have toroidal mode 
numbers 2 < n < 6.!

•   Low frequency ʻkinksʼ may be 
related to “long-lived” modes.!
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Expanded spectrogram shows multiple modes 
appear during final avalanche burst!

•  Drops in the neutron rate are 
correlated with each 
avalanche event.!

•  Typical drops are in the range 
from 5% to 15%.!

•  Avalanche bursts are 
characterized by larger 
amplitude (x10), more modes, 
and stronger, longer 
frequency chirps.!

•  Neutron drops often 
correlated with D! bursts, 
consistent with lost fast ions 
striking limiter tiles.!
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Multiple modes appear during final, 
approximately 1ms long, avalanche burst!

• Mode numbers are 
indicated by the color of 
the contours.!

• Mode amplitudes, profiles, 
fast ion losses are 
measured with 
reflectometer array.!

• Avalanche bursts chirp; 
modeling has found only 
modest enhancement of 
losses correlated with 
frequency chirping.!
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Profiles at time of analysis for H-mode (blue) and 
L-mode (red) avalanches are similar!

• H-mode with weakly peaked 
density profile chosen for 
reflectometer data.!

• Avalanches correlated with low 
density; perhaps "fast larger.!

• Strong rotation goes with beam 
heating; TAE frequency can be 
near zero on axis.!

• TAE avalanches also seem 
correlated with reversed-shear 
q-profiles.!



Fredrickson, Symposium on Plasma Physics, Irvine, CA! Jan. 12-13, 2012! 8!

TAE typically intersect continuum, partly due to 
strong toroidal rotation!

n=2!
TAE GAP!

•  Low aspect ratio gives broad TAE 
gap, but near core, aspect ratio 
isnʼt low and gaps can be closed.!

•  Strong toroidal rotation distorts 
continuum, closing gaps near axis.!

•  Separatrix (large qa) tends to close 
gap at plasma edge. !

•  Frequency chirping moves modes 
further out of gap – no effect has 
been clearly seen in mode profile 
measurements.!

•  Experiments are looking for KAW 
waves with High-k, BES.!

G. Kramer - NOVA!
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Eigenmodes for each toroidal mode are found with 
NOVA, best fit to frequency, profile is chosen!

•  Reasonable fits 
found for each 
observed mode.!

•  Black curves 
are simulated 
reflectometer 
responses for 
NOVA 
eigenmodes 
(insets). !

•  Compression 
included.!
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In presence of multiple modes, with disparate 
frequencies, beam ions are scattered in energy !

•  Energy diffusion present at 
all radii, pitch angles and 
energies.!
• Redistribution in energy 

appears diffusive, as if 
from stochastic scattering.!
•  Fast ions can gain or lose 

energy w/multiple modes.!
• Net ≈ 6% drop in fast ion 

energy, ≈ 11% drop in 
beam-target neutron rate:!
- S ~ #N $(E)v!

 ORBIT - R. White!

%L/R ≈ 0.06 – 0.14!
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For low amplitudes, neutron rate drop is mostly 
from fast ion energy loss, not loss of fast ions.!

•  Neutron drop estimated by 
assuming flat density, 
beam-target dominant 
source of neutrons.!

•  Fast ion losses have 
threshold for onset of 
losses, consistent with 
avalanche model.!

•  Cooling of fast ion 
population appears nearly 
linear with mode amplitude 
– no stochastic threshold?!

ORBIT - R. White !
(Assuming Flat Density Profile!)!
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Energy taken from beam ion population 
comparable to energy in Alfvén waves!

* N.J. Fisch, J-R. Rax, Phys. Rev. Lett. 69 (1992) 612 !

•  Magnetic fluctuation 
amplitude profile from 
NOVA is used to estimate 
energy in TAE; !

  &ETAE/B2 ≈ 2x2x(&Brad/B)2.!
•  Dashed line indicates 

change in "fast estimated 
from ORBIT simulation.!

•  Very few fast ions were 
actually lost.!

•  Could be a form of ʻ!-
channelingʼ*?!
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ORBIT Modeling demonstrates potential approach 
for predicting saturation amplitude, avalanches.!

•  Wave energy increases 
quadratically with mode 
amplitude, but energy loss 
from fast ions saturates.!

•  Time-dependent ORBIT 
simulation could predict 
mode growth, saturation 
and decay.!

•  Fast ion losses have 
threshold for onset of 
losses, consistent with 
avalanche model.!

ORBIT - R. White !
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L-mode TAE avalanche studied previously 
showed similar characteristics!

• Mode numbers are 
indicated by the color of 
the contours.!

• Mode amplitudes, profiles, 
fast ion losses are 
measured with 
reflectometer array.!

• Avalanche bursts chirp; 
modeling has found only 
modest enhancement of 
losses correlated with 
frequency chirping.!
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Qualitatively, TAE gaps similar in L-mode and H-
mode; toroidal rotation important!

•  Low aspect ratio gives broad 
TAE gap, but near core, aspect 
ratio isnʼt low and gaps can be 
closed.!

•  Strong toroidal rotation distorts 
continuum, closing gaps near 
axis.!

•  Modes intersect continuum both 
L & H mode cases.!

•  Separatrix (large qa) tends to 
close gap at plasma edge – 
NOVA needs finite q(a).!

•  Limited plasmas similar.!

G. Kramer - NOVA!
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Eigenmodes for each toroidal mode are found with 
NOVA, best fit to frequency, profile is chosen!

•  Somewhat 
better fits than 
H-mode case.!

•  Black curves 
are simulated 
reflectometer 
responses for 
NOVA 
eigenmodes 
(insets). !

•  Compression 
included.!
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Neutron drop from fast-ion cooling less important 
in this L-mode case?!

•  Neutron drop estimated by 
assuming flat density, 
beam-target dominant 
source of neutrons.!

•  The secondary modes 
relatively weaker in this 
case.!

•  Cooling of fast ion 
population appears nearly 
linear with mode amplitude 
– no stochastic threshold?!

ORBIT - R. White !
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•  Bulk of neutron rate drop due to loss of energy from fast ion 
population, !

•  Comparable to wave energy in mode + losses from damping?!

•  More work needs to be done on validating ORBIT calculations,!

•  What is affect on current drive, heating profiles?!

•  Will full-orbit calculations be necessary in low-field STs?!

•  Can ORBIT-NOVA be used to simulate avalanches?!

•  Predict mode amplitudes in NSTX-U?!

•  Do we really capture the important effects of resonances from 
multiple modes, with non-self consistent simulations?!

Modeling fast ion transport with linear ideal code, 
NOVA, and guiding center code, ORBIT, promising!
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•  Calculate equilibrium, map kinetic data, run TRANSP to get fast 
ion density. !

•  Re-compute equilibrium with NOVA, but no separatrix.!
•  Scale ideal NOVA eigenfunctions using reflectometer data.!
•  Use experimental frequency evolution in ORBIT – may not 

properly track phase-space perturbations.!
•  Use unperturbed fast ion distribution from TRANSP to start 

ORBIT run; wonʼt have history of fast ion phase space 
perturbations from previous TAE and other *AE and MHD.!

•  ORBIT calculates guiding-center orbits:!
•  maybe fewer than 10 cyclotron periods from inboard to outboard!
•  Larmor radius comparable to TAE structures, equilibrium scales.!

Assumptions and approximations in !
NOVA-ORBIT modeling!


