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How far can NOVA — ORBIT modeling of fast ion
transport during, e.g., TAE bursts be pushed?

* Neutron rate drops seen with fishbone-like modes, strong
TAE bursts (avalanches) on NSTX.

« An earlier study of TAE avalanches in L-mode plasmas found
promising agreement, here we extend to H-modes.

- TAE structure can be modeled with NOVA code, but mode
amplitude and frequency chirping are introduced empirically.

- Fast ion transport is presently modeled with the guiding
center code (ORBIT), but full-orbit simulations (SPIRAL*) will
be used to validate the guiding-center calculations.

 Surprising result is that a drop in fast-ion energy, rather than
lon losses, is responsible for most of the neutron rate drop.

* Q. Kramer
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NSTX has low field, high density and current;
perfect for study of fast ion-driven modes

- Low field, high density V y,s, = 0.5 - 2.7 x 10° m/s.
« Beam injection energy 60 - 100 kV, V., =2.6 - 3.1 x 10° m/s
- Reactors would have higher field and fusion a's with V_/V yi¢,6n> 1
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Large Bi.cts Vi.s/'Vanesn gives NSTX many energetic
particle driven modes

* Modes, possibly rsAE, typical during
current ramp.

» TAE and/or TAE avalanches around =
start time of current flattop; S

— low density, high fast ion p.

* Neutron rate drops correlated with
avalanches.

* Later, at higher density, lower
amplitude TAE activity.

« Dominant TAE have toroidal mode
numbers 2 < n < 6.

Low frequency ‘kinks’ may be
related to “long-lived” modes.
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Expanded spectrogram shows multiple modes

NSTX 139048 HFS
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agpear during final avalanche burst

1 * Drops in the neutron rate are

correlated with each
avalanche event.,

Typical drops are in the range
from 5% to 15%.

] « Avalanche bursts are

characterized by larger
amplitude (x10), more modes,
and stronger, longer
frequency chirps.

Neutron drops often
correlated with D, bursts,
consistent with lost fast ions
striking limiter tiles.
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Multiple modes appear during final,
approximately 1ms long, avalanche burst

200 : E\JSTX 1]39048
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Profiles at time of analysis for H-mode (blue) and
L-mode (red) avalanches are similar

124781_285, 139048 265

* H-mode with weakly peaked
density profile chosen for
reflectometer data.

« Avalanches correlated with low
density,; perhaps p...; larger.

. Strong rotation goes with beam 4o,
heating; TAE frequency can be  ,
near zero on axis. 1

 TAE avalanches also seem
correlated with reversed-shear
g-profiles.
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TAE typically intersect continuum, partly due to
strong toroidal rotation

nvk.139048A01 TAE gap n=2

) ] LI BV Ay SRS = I ]
* Low aspect ratio gives broad TAE | AW 5
gap, but near core, aspect ratio | VAV
isn’t low and gaps can be closed. - ,

1501 \
» Strong toroidal rotation distorts e
' ' 1 & Experimental n=2 |/ 1
continuum, closing gaps near axis. _ < M\/\  Frequency range |
 Separatrix (large q,) tends to close = | \ / §
gap at plasma edge. g | §
o |
» Frequency chirping moves modes g | §
further out of gap —no effect has ™ _ | ™ v\' §
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Eigenmodes for each toroidal mode are found with
NOVA, best fit to frequency, profile is chosen

NSTX 139048, n=1
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In presence of multiple modes, with disparate
frequencies, beam ions are scattered in energy

» Energy diffusion present at _
all radii, pitch angles and pi/F =0.06 0. 14139048
energies. O oRBIT- R White |
* Redistribution in energy |

appears diffusive, as if
from stochastic scattering.
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» Fast ions can gain or lose

Final Energy (keV

Z R
energy w/multiple modes. sl ol :
* Net = 6% drop in fast ion ol ; R 1
energy, = 11% drop in | A
beam-target neutron rate: =~ 0o
-S ~3,, o(E)v Initial Energy (keV)
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For low amplitudes, neutron rate drop is mostly
from fast ion energy loss, not loss of fast ions.

* Neutron drop estimated by

(Assuming Flat Density Profile!)
ORBIT - R. White  NSTX 139048 0.27s

assuming flat density, N
beam-target dominant - : ggfg ggg?)l)
source of neutrons. sl ¢ dS/S (confined) ™ °
« Fastion losses have — ]
threshold for onset of . ¢
losses, consistent with £ *°
avalanche model. o _
o
« Cooling of fast ion 10 ~
population appears nearly - Exper. neutron-
linear with mode amplitude o ® rate drop (%)
_ no stochastic threshold? ~ %%+

Normalized Mode Amplitude

ONSTX
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Energy taken from beam ion population
comparable to energy in Alfvén waves

« Magnetic fluctuation 0.04F
amplitude profile from
NOVA is used to estimate 0-03f
energy in TAE; '

OE /B2 ~ 2x2x(3B,, /B)?.

» Dashed line indicates ,
change in . estimated o oo
from ORBIT simulation.
« Very few fast ions were 0.01
actually lost. 002y
00 02 04 06 0.8
« Could be a form of ‘a- ‘-I—’
channeling’*? pol
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*N.J. Fisch, J-R. Rax, Phys. Rev. Lett. 69 (1992) 612
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ORBIT Modeling demonstrates potential approach
for predicting saturation amplitude, avalanches.

* Wave energy increases
quadratically with mode
amplitude, but energy loss
from fast ions saturates.

« Time-dependent ORBIT
simulation could predict
mode growth, saturation
and decay.

* fast ion losses have
threshold for onset of
losses, consistent with
avalanche model.

15

10
dE/E (%)

0

Wave Energy (a.u.)

0.0 0.5

1.0

1.5 2.0

Norm. Mode Amplitude

ONSTX

Fredrickson, Symposium on Plasma Physics, Irvine, CA

Jan. 12-13, 2012 13



L-mode TAE avalanche studied previously
showed similar characteristics

NSTX 124781

- Mode numbers are SO T T
indicated by the color of b
the contours. %100
>
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L

measured with
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Qualitatively, TAE gaps similar in L-mode and H-
mode; toroidal rotation important

* Low aspect ratio gives broad G- Kramer NOVA  1247810.285s n=3
TAE gap, but near core, aspect 200 | | |
ratio isn’t low and gaps can be '
closed.

150 =

« Strong toroidal rotation distorts

continuum, closing gaps near N
. X Experimental n=3
axis. g Frequency range
8 100 |
» Modes intersect continuum both 3 |-._
()] e
L & H mode cases. o[ T~
. 50
« Separatrix (large q,) tends to :
close gap at plasma edge — Doppler ..
NOVA needs finite q(a) O\ Frocuency
q . 0\.1...1...1...1-
0.0 0.2 0.4 0.6 0.8 1.0
* Limited plasmas similar. sqrt(Ypol)
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Eigenmodes for each toroidal mode are found with
NOVA, best fit to frequency, profile is chosen

13904
139048 20 39048

« Somewhat
better fits than
H-mode case.
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Neutron drop from fast-ion cooling less important
in this L-mode case?

» Neutron drop estimated by ORBIT - R. White  NSTX 124781 0.285s

. . 4
assuming flat density, ° = dS/S (total) M
beam-target dominant " o dS/S (lost)
source of neutrons. 30| ¢ dS/S (confined)

@

* The secondary modes = N
relatively weaker in this 3 20
case. 9 -

@

» Cooling of fast ion .
population appears nearly S . \ Exper. neutron
linear with mode amplitude " rate drop (%) 1
— no stochastic threshold? ot e : , ; - !

Normalized Mode Amplitude
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Modeling fast ion transport with linear ideal code,
NOVA, and guiding center code, ORBIT, promising

» Bulk of neutron rate drop due to loss of energy from fast ion
population,

« Comparable to wave energy in mode + losses from damping?
» More work needs to be done on validating ORBIT calculations,
* What is affect on current drive, heating profiles?
» WIill full-orbit calculations be necessary in low-field STs?
« Can ORBIT-NOVA be used to simulate avalanches?
» Predict mode amplitudes in NSTX-U?

* Do we really capture the important effects of resonances from
multiple modes, with non-self consistent simulations?
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Assumptions and approximations in
NOVA-ORBIT modeling

Calculate equilibrium, map kinetic data, run TRANSP to get fast
ion density.

Re-compute equilibrium with NOVA, but no separatrix.

Scale ideal NOVA eigenfunctions using reflectometer data.

Use experimental frequency evolution in ORBIT — may not
properly track phase-space perturbations.

« Use unperturbed fast ion distribution from TRANSP to start
ORBIT run; won'’t have history of fast ion phase space
perturbations from previous TAE and other "AE and MHD.

« ORBIT calculates guiding-center orbits:
* maybe fewer than 10 cyclotron periods from inboard to outboard

« Larmor radius comparable to TAE structures, equilibrium scales.
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