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Outline

NBI-driven modes in the reversed—field pinch:

- spatial structure
- fast ion- dependence
- three-wave coupling

NBI reduction of innermost-resonant tearing mode

Evidence for fast ion loss induced by NBI-driven modes



Multiple interferometry techniques diagnose equilbrium and
fluctuation quantities.
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Faraday rotation slope change suggests NBI current drive.
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* Faraday rotation measurement suggests that NBIl increases central
plasma current density by (25 +10)%.

e TRANSP shows that central fast ion density is 25% of electron density.



Faraday rotation slope change suggests NBI current drive.
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Faraday rotation measurement suggests that NBI increases central
plasma current density by (25 +10)%.

TRANSP shows that central fast ion density is 25% of electron density.



Bursty modes are observed with NBI.
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e n=5 bursty NBI-driven modes
- frequency scales inversely with density but weak dependence on |B].

- identity remains unresolved.




Single burst of NBI-driven mode

After band -pass fllter [60, 120] kHz
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e Each burst has a duration ~0.06 ms (~160 Alfven times a/v, ) and
a fish-bone like structure.

e Ensemble analysis is performed over many bursts.



Density fluctuations associated with NBI-driven modes peak in the
core where fast ions reside.
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TRANSP modeled fast ion density
peaks in the core,
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Density fluctuation peaks near the core where equilibrium density
gradient is small.
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From linear MHD, density fluctuation
arises from density gradient
(advection) or compression
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 [Adz peaks where vn_ is small,
- compressional effect?
- others?

Phase shift across |R-R,|~0.3 m,
where Vn, is large.



Faraday-polarimetry fluctuations are measured and contain
information on internal magnetic fluctuations.
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NBI mode decreases as plasma current increases, suggesting a B;

dependence.
density fluctuations Fast-ion B profiles from TRANSP
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Decrease of 6; is largely due to increase of B

As plasma current increases, density fluctuations associated with NBI-driven
modes decrease.

Increase of current leads to a reduction of §;, thereby reducing free energy
for driving instabilities.



Multiple coherent NBI-driven modes are detected.
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Three-wave coupling among multiple NBI-driven modes is observed.
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Density fluctuation spatial structure changes with mode number.
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n=>5 has largest density
fluctuations while n=4 is weakest.
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Both n=4 and n=5 modes are core-
localized but with different structure.

Both n=5 and n=-1 density fluctuations
have large inboard and outboard
asymmetry:

- inboard dominates for n=5

- outboard dominates for n=-1
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NBI-driven modes in the reversed—field pinch:

- spatial structure
- fast ion- dependence
- three-wave coupling

NBI reduction of innermost-resonant tearing mode

Evidence for fast ion loss induced by NBI-driven modes



Local magnetic and current fluctuations can be obtained from
polarimetry fluctuations.
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NBI leads to global reduction of innermost core-resonant (1,5)
tearing mode.
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NBI-driven modes in the reversed—field pinch:

- spatial structure
- fast ion- dependence
- three-wave coupling

NBI reduction of innermost-resonant tearing mode
Mechanism of mode stabilization not yet identified:
(1) current profile change;
(2) FLR effect from fast ions at tearing mode layer; .......

Evidence for fast ion loss induced by NBI-driven modes
- from NBI reduction of tearing mode



Tearing mode suppression is reduced when NBI-driven mode peaks,
suggesting loss/redistribution of beam ions.
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Suppression of (1,5) tearing mode is
reduced when NBI-driven mode peaks
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Fast-ions from NBI reduces of innermost-resonant (1,5) tearing

mode.
Fast-ion Density Measured (1 5) tearmg mode
03 I | I | 30
Before burst (TRANSP) / No NBI
o _ 20 o .
5 0.2 ‘
s . " Before burst
=] U \
E 0.1 i 7 ‘D’- 101
<)
0.0 ! ! ! 0 ! !
0.0 0.1 02 03 04 0.5 0.0 0.1 02 03 04 0.5

r [m] r [m]

NBI reduces amplitude of innermost-resonant tearing mode.



Increase of tearing mode after a NBI-driven burst indicates beam
ion loss/redistribution.
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* Increase of tearing mode after a burst shows the reduction of beam-
ion effect, suggesting a loss or redistribution of beam ions.



Larger NBl-mode induces larger increase of tearing mode,

suggesting a larger fast ion loss/redistribution.
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NBI-driven modes in the reversed—field pinch:

- spatial structure
- fast ion-3 dependence
- three-wave coupling

NBI reduction of innermost-resonant tearing mode

Evidence for fast ion loss induced by NBI-driven modes



Tearing mode enhancement increases with density fluctuations,
as plasma current decreases.
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e Larger enhancement of tearing mode indicates larger reduction
of beam-ion effect, suggesting larger fast ion loss/redistribution.



Summary

e Fast-particle driven instabilities are observed during NBI in a RFP.
- density fluctuation spatial structure peaks in the core,
where fast ions reside.
- density fluctuation decrease as plasma current increase,
suggesting a fast ion B; dependence.

e Measured bicoherence among multiple NBl modes indicates
strong nonlinear three-wave coupling.

e NBI reduces amplitude of innermost-resonant tearing mode.
- NBI-driven mode reduces suppression of tearing mode,
- implies loss or redistribution of beam ions.



Discussion Topics

* Difference between energetic particle physics in RFP and tokamak?
- Role of strong magnetic shear
- Role of tearing modes and 3D magnetic structures

* Possible application of numerical codes (M3D-K? HINST? NOVA-K? GYRO? )
to RFP for study of NBI-driven instabilities and tearing mode suppression?

e Possible contributions to code validation effort from a RFP?



global tearing mode structure measured by interferometry and
polarimetry diagnostics
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